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Over time, many natural phenomena that had long appeared to be disorderly have been found to be
orderly and predictable under specifiable conditions. First introduced in the early 1980s, generativity
theory is a formal, predictive theory of the behavior of organisms that reveals the orderliness, moment to
moment in time, in apparently disorderly behavior - even the surprising behavior a community
sometimes calls “creative.” According to this theory, under two specific conditions — when behavior is
ineffective or when stimuli present in the environment are novel, compound, or ambiguous - novel

Keyword's-'. behavior emerges in a predictable way as a result of a dynamic process in which multiple behavioral
genifaFglty theory processes operate simultaneously on the probabilities of multiple behaviors. The process can be
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represented by a series of equations called transformation functions. Instantiated in a computer model,
the equations have proved useful in the moment-to-moment prediction of the emergence of novel
behavior in both pigeons and people. A graphical method that generates a “frequency profile” has also
helped to reveal the orderliness in the apparently disorderly behavior of individuals. Generativity theory
makes no assumptions about the existence or nature of cognitive mechanisms and does not depend on
the statistical analysis of aggregated data to show the orderliness in complex behavior. Although its
predictive power in the laboratory is perhaps unparalleled, the full potential of generativity theory has
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yet to be explored.
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1. Introduction

Charles Darwin's ability to detect certain patterns in the
apparently disorderly physical characteristics of 26 types of birds
in the Galapagos Islands helped him to formulate one of the most
profoundly important theories in the history of science, the theory
of evolution (Desmond & Moore, 1991). He deduced that the
orderly variability in phenotypes produced by sexual reproduction
in each generation of a given species, in combination with the
selective survival requirements exerted by different environments,
could, over time, account for the creation of new species. He knew
nothing about genes, meiosis, gametes, or syngamy - about the
biological mechanisms underlying the phenomena he observed -
but he inferred that such mechanisms must exist.

Although the details vary from one scientific domain to another,
this is generally what science is all about: finding the orderliness in
apparently disorderly phenomena, often at just one level of observa-
tion. Ideally, that orderliness is eventually expressed in formal terms so
the theory can be used to make specific predictions; this increases the
utility of the theory and also helps to establish its validity. Einstein's
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general theory of relativity is an excellent case in point. First published
as a set of field equations (Einstein, 1915), in the years and decades
that followed, the mathematical form of the theory proved to be
successful in making accurate predictions about gravitational time
dilation, the bending of starlight around the sun, and other natural
phenomena (Einstein, 1915). Just recently, the theory was shown to
predict with remarkable accuracy the redshift of light that occurs in
massive galactic clusters (Wojtak, Hansen, & Hjorth, 2011).

The behavior of organisms is one of those natural phenomena
that often appears to be disorderly and unpredictable. Although it
is true that hundreds of millions of human drivers manage to stay
in the correct lanes on roadways every day, when human behavior
is not constrained by salient stimuli (curbs, signs, and lines on the
road), the consequences of previous actions (traffic tickets and
warnings), or rules and laws (descriptions of how one must drive
to avoid future tickets), it often appears to be quite disorderly.
In new or challenging situations especially, it can be difficult to
predict what people will do, think, or say - even for them to
predict what they will do, think, or say. People also do genuinely
new things; virtually every sentence that we speak or write is new
in some respects, our dreams are sometimes extraordinary, and
occasionally an individual will do something so new and interest-
ing that a community will label the action or its product “creative.”
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Although the language of creativity is applied erratically by a com-
munity (depending on what it happens to consider interesting at the
time), there is also no question that occasionally someone behaves in
ways that are profoundly new, producing the kind of output
Csikszentmihalyi calls "Big C" creativity (e.g., Csikszentmihalyi, 1996;
Csikszentmihalyi & Epstein, 1999).

We face a range of predictability challenges here, which can be
said to exist on a continuum from fairly easy (predicting which
turns someone will take on the way home from work) to quite
difficult (predicting which turns someone will take when he or she
is lost in a new city) to probably impossible (predicting the
specifics of an amazing new mobile computer application some-
one devises while being lost in a new city, which will someday
help millions of people to avoid getting lost).

In the early 1980s, inspired by observations I made over the course
of conducting a series of somewhat irreverent experiments with
pigeons, I formulated a theory of how behavior is generated moment
to moment in time, possibly in a wide range of higher organisms
(Epstein, 1985b, 1991, 19963, 1999). The theory - generativity theory —
can be expressed as a series of equations called “transformation
functions.” Instantiated in a computer model, the equations have
proved useful in predicting fairly complex behavior moment to
moment in time in the laboratory. Over the years, I have become
increasingly confident that generativity theory, or at least something
like it, can help us understand how behavior is generated across that
entire range of difficulty - from the reappearance of an old, well-
established behavior to the occurrence of profoundly new behavior.
Along the way, I also developed a type of graph called a “frequency
profile” which reveals the orderliness in certain types of performances
that appear through direct observation to be disorderly in nature.

Before I present the basics of generativity theory, [ will attempt
to put the theory into a broader context of some contemporary
thinking about the orderliness of behavior.

2. Some models, ideas, and approaches
2.1. How random is behavior?

In recent years, a growing number of experts have come to
view some aspects of behavior to be truly random in nature -
unpredictable, by definition. In a review of the relevant literature
as of 2005, Paul Glimcher identified a number of researchers who
not only have concluded that “indeterminacy” is a basic feature of
both human animal behavior but even that evolutionary forces
may have favored organisms who can behave unpredictably under
certain conditions. An animal is less likely to killed, certainly, if a
pursuing predator cannot easily anticipate its next move. Entire
classes of individual behavior have been studied which, according
to Glimcher, are “as fully random as can be measured” (Glimcher,
2005, p. 28). Accordingly, neuroscientists, he says, are uncovering
evidence for the existence of “apparently indeterminate processes
within the architecture of the mammalian brain” (p. 28). In a broad
overview of literature that overlaps fairly little with the studies
cited by Glimcher, Allen Neuringer (2002) draws similar conclu-
sions: that behavioral variability is a “stochastic process” (p. 697)
and that “organisms have evolved to behave unpredictably”
(p. 701).

But there is a problem here. These conclusions, as well as those of
many other investigations of behavioral variability (e.g., Emonet &
Cluzel, 2008; Hopkinson & Neuringer, 2003; Johansen, Killeen, &
Sagvolden, 2007; Machado, 1997; Mclntosh, Kovacevic, & Itier, 2008;
Reichert, 1978; Shimp, Froehlich, & Herbranson, 2007; Tatham,
Wanchisen, & Hineline, 1993), are based on aggregated data -
aggregated over trials with individual subjects or, more commonly,

across organisms. Do aggregated data tell you anything meaningful
about the orderliness of the behavior of organisms?

If, over time, you keep track of whether I drink water or Diet
Pepsi with my meals (which, in truth, are virtually the only liquids
I ever drink from a glass or bottle, even with my breakfast), you
will likely conclude that there is a 50/50 chance that I will drink
one or the other with my next meal. As you continue to keep count
over time, you will become increasingly confident about this
prediction; you might even conjecture that a neural random
number generator - the proverbial “mental coin toss” - governs
my choice. But if, on a single occasion, you observe that I enter the
kitchen, then prepare a peanut-butter-and-jelly sandwich - which
you know from previous observations that I consume only with
water — then open the refrigerator door where a water bottle and a
Diet Pepsi bottle stand side by side, will you have any trouble
predicting my next move?

Take this a step further. Say you begin to keep careful records of
the specific foods I consume with water versus the specific foods I
consume with Diet Pepsi, along with specific stimulus conditions
and behaviors that reliably precede the consumption of each type
of drink. Over time, wouldn't you be able to predict my choice
of drinks on any single occasion with increasing accuracy, perhaps
with nearly 100% accuracy?

Although I am a heavy user of statistics in most of my current
research projects (because I'm working with data sets obtained
from thousands of people - see, for example, Epstein, McKinney,
Fox, & Garcia, 2012), when it comes to understanding the
moment-to-moment behavior of a single organism, the statistical
analysis of aggregated data can be misleading (cf. Barlow & Nock,
2009; Sidman, 1960; Skinner, 1966, 1976). Is it even meaningful to
say, based on aggregated data, that there is a 50/50 chance that I
will select one drink or the other when, with the right data in
hand, it would be easy to make an accurate prediction about my
behavior on any single occasion? Considered in this context, the
statistical approach to understanding ongoing behavior in the
natural environment may be of questionable value.

Yet this approach is quite common. Evolutionary biologist John
Maynard Smith's (1982) “hawk-dove model” is a case in point.
Applying concepts from game theory, Maynard Smith shows that
under certain conditions - specifically when the value of a
territory is high (implying an animal should protect it aggres-
sively) and the cost of an injury is also high (implying that an
animal should retreat to avoid being hurt), the only sensible
strategy for that animal is to be aggressive on some occasions
(a hawk) and passive on others (a dove), assuming one role or the
other unpredictably from one occasion to the next. Survival is
enhanced by this strategy; the math is clear.

But, again, by observing a particular animal for a long period of
time, wouldn't it be fairly easy to predict which role it will assume on
a single occasion? Its behavior on a particular occasion will be the net
result of its recent environmental history and the particular stimulus
conditions it faces. As the attacker grows near, the appearance, odor,
movements, and sounds of that attacker will, from one moment to the
next, make all the difference in your prediction. Imagine, in fact, that
you could speed up your perception so that the scene will appear to
unfold in slow motion, giving you time to analyze all aspects of what is
occurring. Fifteen minutes before the attack, could you make a
reasonably good prediction? One minute before the attack, could
you make a better one? One second before the attack, is there any
doubt that you could make an accurate prediction about which role
the animal will assume? What's more, by altering the variables of
which you know the behavior is a function, couldn't you perhaps
guarantee that an animal will always behave as a hawk or always
behave as a dove?

Let us take this idea even further. If, in a particular setting, from
one occasion to the next you are highly adept at predicting
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whether an animal will behave as either a hawk or a dove,
wouldn't it be relatively easy for you to compute how many times
the animal will assume each role over the course of a year? And if,
one conspecific at a time, you studied the animal's entire cohort in
the same manner that you studied that animal, couldn't you
predict with confidence what average performances would look
like for that cohort? In other words, doesn’t the ability to make
accurate moment-to-moment predictions about the behavior of
individual organisms make the statistical approach to studying
behavior redundant? By this logic, it could be said that assertions
about the stochastic nature of behavior are based on a lack of
information.

2.2. An embarrassing case in point

Late one evening in 1980, when | was a graduate student at
Harvard, something extraordinary happened in the pigeon lab. B.F.
Skinner (“Fred” to his friends) and I had been conducting an
experiment to test a particular idea we had about why a phenom-
enon called “autoshaping” worked. The particulars of the theory
are not important here, especially because it was wrong. What is
important is that for a number of sessions, the movement of a
small spot of light on a wall had been followed repeatedly by the
operation of a dispenser of pigeon feed. Sure enough, after a few
pairings of spot and food, both of the pigeons in the experiment
began pecking at the spot whenever it appeared (that is “auto-
shaping”). To make sure the pairings were indeed responsible for
the pecking, our next step was to present both the food and the
spot at random intervals. As predicted, over the course of many
sessions, the pigeons stopped pecking the spot almost entirely.
The experiment was now officially over.

But that night, because both birds still pecked the spot
occasionally, I decided to disable the feeders. My thinking was
that this would get rid of those last few pecks. After 15 min had
passed, however, something remarkable happened. One of the
birds started to peck the spot at a high rate - more than 150
responses per minute - as frequently as it had ever pecked during
the first phase of the experiment. I was pretty sure that this was
due to an equipment failure of some sort. But a few minutes later,
the second bird started pecking at a high rate. Each bird pecked the
spot nearly a thousand times before the one-hour session
was over.

[ called Fred at home long before that hour ended. We had
stumbled onto an enormous effect - the largest behavioral effect
I had ever seen or heard of - and neither of us had the slightest
idea how to explain it, even after we replicated the effect in two
additional experiments. Using his privilege as a member of the
National Academy of Sciences, Fred submitted our write-up of the
three experiments to the Academy's Proceedings (PNAS), and it was
published shortly after (Epstein & Skinner, 1980). That was the
only time during Skinner's entire career that he used that
privilege. (He had published papers in PNAS in the early 1930s,
but those had been submitted by one of his Harvard supervisors,
William Crozier (Skinner, 1979, p. 60).)

Two years later, having now observed dozens of extraordinary
pigeon performances in clear acrylic chambers in my own lab,
[ finally figured out what had happened - and why Fred and I had
been baffled. Like most experiments conducted in the Skinnerian
tradition, our autoshaping experiments were conducted in opaque,
sound-attenuated chambers. In other words, we couldn't see the
birds; that was the problem.

In papers published in 1983 and 1985, I explained the 1980
phenomenon and offered a principle and new data to support my
explanation (Epstein, 1983, 1985a). According to the principle of
resurgence, in a given setting, when behavior that was recently
effective is no longer effective, behaviors that had previously been

effective in that setting will recur; this phenomenon had been
observed by researchers since the early 1900s (e.g., Hull, 1934;
see Epstein, 1985a for additional references). In the first phase of
the autoshaping experiment, pecking the spot was reliably fol-
lowed by the delivery of food; from the pigeon's perspective,
pecking produced food. In the second phase of the experiment,
when the appearance of the spot and the presentation of food
came at random intervals, all sorts of behaviors were followed by
the presentation of food: turning, head bobbing, lifting a wing, and
so on. Some of those behaviors may even have persisted over time,
occurring “superstitiously” (Skinner, 1948). We had no way of
seeing the birds, of course, so it never occurred to us that this was
happening.

In the all-important third phase of the experiment, no food was
delivered, so whatever the birds were doing to “produce” food -
wing flapping, turning, etc. - was now ineffective. It took varying
amounts of time for those superstitious behaviors to disappear,
but when they finally did, the previously reinforced behavior
kicked in. Both birds began pecking the spot at a high rate. The
resurgence process ultimately became one of the key components
of generativity theory. I even found it useful in analyzing my own
behavior: in footnote 5 of the 1985 paper, I explained how the
process of resurgence could account for my formulation of the
principle of resurgence (Epstein, 1985a; also see Epstein (19964, p.
145)).

The lesson here was clear: Skinner and I could not explain the
effect we had found because we lacked important information
about the moment-to-moment behavior of the pigeons.

2.3. Models of behavior, cognition, and creativity

Mainstream models of behavior or cognition these days are
usually based on the supposition that organisms are information
processors. This idea began to take hold in the 1960s when
computers started to become mainstream. As they have prolifer-
ated over the years, information-processing models of cognition
and behavior have become ever more popular. Computers are
behaving in increasingly intelligent ways, so intelligent organisms
must operate as computers do, the logic goes. Here is the faulty
syllogism:

1. All computers behave intelligently.

2. All computers are information processors.

3. Therefore, all intelligent entities are information processors (cf.
Epstein, 1984a, 1996a).

The information processing model is just one variation on the
kind of mentalistic models that have been common in psychology
since its inception as an academic field in the late 1800s. Because
models of this sort cannot easily be tested against physical
correlates, they have sometimes inspired long-running debates
that perhaps will never be resolved until an effective form of
neuroscience finally emerges. Eric Kandel, a Nobel-prize-winning
neuroscientist, estimates, unfortunately, that this will take another
hundred years (Epstein, 2012, p. 50). In the meantime, mentalistic
models have few constraints and are sometimes not falsifiable,
which has meant over the years that the debates that have
emerged among cognitive scientists have proved to be every bit
as rancorous as those that took place decades ago between
behavioral and cognitive psychologists. The 30-year debate
between Stephen Kosslyn and Zenon Pylyshyn about the “algo-
rithms” underlying mental imagery is a case in point (e.g., Kosslyn,
2005; Pylyshyn, 2003; cf. Anderson, 1978). A recent and highly
influential mentalistic model of creativity proposed by Mark
Turner of Stanford University is not even tied to empirical
research; Turner even admits that he is “skeptical” that
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experiments could ever be performed to support or refute the
model (Turner, 2014, p. 266).

Some information processing models of advanced human
abilities such as creativity or humor are not even tied conceptually
to neural or behavioral processes. Schmidhuber's (2012) “Formal
Theory of Creativity,” for example, was developed as part of his
effort to build “artificial robotic scientists and artists equipped
with curiosity and creativity” (p. 323); to my knowledge, his
model has never been used in the prediction or analysis of actual
human behavior.

Here is an obscure but recent example of two very different
approaches to trying to understand the same highly specific
behavioral phenomenon: the particular way in which a rat turns
away from another rat that is trying to steal its food - the so-called
“dodger/robber” scenario. Bringing an information processing
perspective to the problem, Whishaw and Gorny (1994) manipu-
lated variables that affect a dodger's behavior - food size, food
hardness, and certain characteristics of the behavior of the robbers
- and, averaging data across rats, concluded that the dodgers'
behavior was not a fixed action pattern but rather was guided by
cognitive processes and, in particular, that “rats estimated the time
required to complete eating and adjusted the size of their evasive
movements to gain this time” (p. 35). Recently, Bell and Pellis
(2011) took a more conservative look at this scenario, wondering
whether rats were capable of complex computations:

...if the rats calculate the angular displacement appropriate for
a given dodge, they would have to calculate the time it takes to
eat a piece of food, then enter that information into an
algorithm along with other variables, such as robber identity
and movement. Moreover, the algorithm would require updat-
ing to incorporate adjustments needed due to the distance and
approach speed of the robber. Such calculations posit the
existence of cognitively demanding mechanisms that would
seem inefficient. (p. 659)

After replicating the effect and manipulating appropriate vari-
ables, they concluded that a simple cybernetic model is all that is
required to account for the dodgers' behavior, indicating that this
model “accounts for all of the behavior present, including phe-
nomena that might previously have been attributed to foresight,
planning and computation” (p. 7). At first glance, it would appear
that Occam's Razor would settle the matter; the simpler explana-
tion should be preferred. But Bell and Pellis' (2011) conclusions,
like those of Whishaw and Gorny (1994), are based on a statistical
analysis of aggregated data, and they also conjecture that the rats
are following “simple rules” (part of the title of their paper).
But where, exactly, are those rules? Are they in the rats? If not,
how are the rats following them?

One obvious problem here is the reliance on groups and
statistics, especially if it would be possible to observe individual
organisms continuously in time. But the larger problem is the high
likelihood that neither goals nor rules exist anywhere inside
animals. In fact, even though humans can “recite rules” and “state
or envision goals” and “recall facts,” reciting, stating, envisioning,
and recalling are all just different kinds of behavior that need to be
understood, modeled, and predicted. It is highly unlikely that
rules, goals, or even memories will ever be found inside humans,
never mind rats.

Space constraints prevent me from exploring this issue in
detail, but it can reasonably be argued that the information
processing approach to understanding the behavior of organisms
was without merit from the start. As I have watched computa-
tional neuroscience grow as a discipline over the years, | have been
become increasingly convinced that it has little or no relevance to
the actual mechanisms that explain how organisms behave. No

one has found or will ever find the proverbial “memory trace,”
and no one has found or will ever find a “representation” of
Beethoven's 5th Symphony in a person's brain. When we recall
hearing that symphony, we do not “retrieve” a “memory”; rather
we do very roughly what we did when we actually heard the
symphony, and actual neural activity reflects this (Gelbard-Sagiv,
Mukamel, Harel, Malach, & Fried, 2008). Hearing, after all, is
behavior; it is activity in the auditory system and brain. When
we recall hearing a symphony, we engage in similar activity.
We can do so without a representation of that symphony existing
in the brain in any possible sense of the word “representation”. When
we clap our hands repeatedly, we are not recalling the clap; we are
simply behaving in roughly the same way over and over. Recall is
the same kind of phenomenon, except that the stimulus that
originally occasioned the behavior is now absent, which is why
recall is so imprecise.

When we formulate a new rule or have a new idea, we do not
change the parameters of an internal algorithm or do something
mysterious in a mental world; rather, generative processes in the
nervous system, stimulated by new challenges in our environ-
ment, allow verbal and perceptual elements we have already
acquired to merge in new and sometimes useful ways (cf.
Rosenbaum, 2014).

3. Generativity theory

In 1978, inspired by the tendency of researchers who worked
with non-human primates to attribute the human-like behaviors
of those primates to higher mental processes, Skinner and I set in
motion what we called the “Columban Simulation Project,” after
Columba livia, the taxonomic name for pigeon (Epstein, 1981).
The idea was to teach the primate researchers a lesson by showing
that we could, through operant conditioning techniques, get pigeons
to do whatever the chimps were doing. If an identifiable history of
training was all one needed to account for a complex, human-like
performance, why would one speculate about cognitive processes?

Our first publication along these lines appeared in Science in
1980 and was entitled “Symbolic Communication Between Two
Pigeons (Columba livia domestica)” (Epstein, Lanza, & Skinner,
1980). It made news around the world, even in the Fiji Times, the
latest issue of which I just happen to have on my desk at the
moment (the University of the South Pacific, where I am a faculty
member, is located in the beautiful Fiji Islands). Our report was
notable if only because of its unusual style of writing. It is, to my
knowledge, the only satire Science has ever published; even the
title was tongue-in-cheek.

Mimicking a recent report published by researchers at Emory
University on “symbolic communication” between two chimpan-
zees (Savage-Rumbaugh, Rumbaugh, & Boysen, 1978), we showed
that one pigeon (“Jill”) could “transmit information” to another
pigeon (“Jack”) entirely through the use of “symbols” which Jack
had learned to “decode.” Jack and Jill could see each other through
a clear partition in a two-sided chamber. Jack “initiated each
conversation” by pecking a sign that read “What Color?” Jill
responding to this “question” by looking behind a curtain where
one of three colored lights was illuminated at random - red, green,
or yellow - then, with Jack looking on intently, pecked a corre-
sponding alphabet letter - R, G, or Y - which was immediately
illuminated. Grateful for receiving the message, Jack now pecked a
large button reading “Thank You,” which immediately caused food
to be delivered to Jill. Then Jack pecked a colored button corre-
sponding to the “information” he had received (both pigeons were
male). If his choice matched the color hidden behind the curtain,
his feeder would now operate automatically, and the sequence
would begin again. The birds were able to repeat this sequence
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repeatedly with more than 90 percent accuracy. When we covered
the letters, accuracy dropped to 30 percent.

In the last paragraph of the paper, borrowing the opening
phrase of the famous last sentence of Watson & Crick's famous
article on the structure of DNA (“It has not escaped our notice that
the specific pairing we have postulated immediately suggests a
possible copying mechanism for the genetic material” (Watson &
Crick, 1953, p. 758)), we admitted that “It has not escaped our
notice” that the entire performance could be accounted for by the
pigeons' recent training histories, without any recourse to cogni-
tive, purposive, or mentalistic concepts (cf. Taylor et al., 2010).
We concluded that “A similar account may be given of the
Rumbaughs' procedure, as well as of comparable human language”
(Epstein et al., 1980, p. 545). We followed this somewhat out-
rageous paper with an equally irreverent one entitled, “Self-
Awareness in the Pigeon,” which was also published in Science
(Epstein, Lanza, & Skinner, 1981).

The most remarkable thing about these papers was not their
findings. After all, we had not discovered anything; we were
simply suggesting to our colleagues in the incipient field of
cognitive science that they should be cautious about how they
theorize. I acknowledged this in the spring of 1981 when the time
came to defend my dissertation, which was about simulating
complex human behavior with pigeons. Because of all the media
hoopla surrounding the work I was doing with Skinner, instead of
just the usual three committee members, 10 Harvard faculty
members attended my defense, most of whom were skeptical
about pigeon research. At a dissertation defense at Harvard in
those days, faculty members could ask you about anything, not just
about your dissertation topic, so the pressure was enormous.
To make matters worse, the two Harvard faculty members with
the strongest behavioral backgrounds - Fred Skinner and Richard
Herrnstein, arguably Fred's most prominent student - did not
attend. Fred did not come because he was technically retired, and
Dick did not come because he and I had spent the last few years
arguing with each other, mainly about the significance of
Skinner's work.

My examiner was William K. Estes, a mathematical psycholo-
gist, widely known among the graduate students as one of the
most brilliant and unapproachable professors around; I had never
even spoken to him before. He opened the proceedings by asking
me a key question in a halting, somewhat labored fashion: “Do you
think... well... that these, uh, simulations youre doing with...
pigeons... simulations of, well, distinctive human behaviors that are
indicative of... higher mental processes... shed any light on human
behavior or cognition?” I hesitated, because it was immediately
obvious to me that this was a litmus test that would set the tone
for the entire defense. I replied, “No,” and I stopped. (It was a yes-
or-no question, after all.) Estes smiled, and things went smoothly
after that.'

But there was indeed something remarkable about the various
experiments Fred and I conducted together for several years,
namely, that in many of them we had set aside - possibly for
the first time in the long history of Harvard's operant laboratory —
the opaque, sound-proof chamber in favor of thin, clear acrylic
walls through which we could both watch and film our birds.

! Even though all 10 faculty members asked me questions, my orals did go
remarkably smoothly, in part because of one professor's kindness. A few days
before the orals, he asked me to come to his office and furtively handed me a piece
of paper on which he had written three questions. “These are the questions I'm
going to ask you at your oral defense,” he said. “Years ago, a professor did this for
me, and now I'm doing it for you.” At the orals, he sat in the back of the room and
said nothing for just over an hour. Then he raised his hand to get Estes' attention
and proceeded to ask me an impossibly difficult question, which, after a pause for
effect, I answered confidently. Estes responded: “Well - I think we’ve all heard
enough, don’t you?” There were nods around the room, and that was that.

When you watch, and especially when you have the luxury of
replaying a performance in slow motion, you see things that could
never be detected in procedures that aggregate the characteristics
of operationally defined responses across trials or organisms.
Do “responses” even exist? Behavior is continuous, after all. How
are we justified in calling two separate lever presses instances of
the same response? As William James (1890) pointed out in his
classic Principles of Psychology, we would never call two ticks of a
clock “the same” tick. Skinner wrestled with this very issue in one
of his earliest and most thoughtful papers (Skinner, 1935).

One of the first things you notice when you conduct experi-
ments in open chambers (or, for that matter, in the natural
environment outside the laboratory) is that organisms continue
to behave even when you are not prodding or rewarding them.
What's more, much of what they do is new, at least in some small
way. The point was driven home to me on the day Fred and I
reached a critical point in an experiment we ultimately called “The
Spontaneous Use of Memoranda by Pigeons” (Epstein & Skinner,
1981). In the “symbolic communication” procedure, Jill had been a
“speaker” (passing along a “message”) and Jack had been a
“listener” (receiving that “message”). At some point we decided
to train each bird in the opposite role. Then, on that critical day, we
removed the clear partition that separated the two sides of the
chamber and put just one bird inside.

At first the bird behaved erratically, but, after a few minutes, a
new and stable performance emerged “spontaneously” - that is,
without any intervention on our part. In a sequence of steps that
proved to be quite stable, the bird first behaved as a speaker; that
is, it looked behind the curtain where a color was illuminated,
then pecked the letter corresponding to the hidden color (the
letter now lit up), and then crossed the chamber to the listener's
side. Now the bird oriented toward and sometimes stretched
toward the illuminated letter - sometimes repeatedly — and then
pecked the corresponding color on the listener's panel. If the
colors matched, a feeder was then operated automatically on the
listener's side. Precisely the same performance emerged when we
repeated the procedure with the other bird, and both birds
repeated this sequence many times - again, with very few errors.

With each bird, two repertoires of behavior had come together
spontaneously to produce a new sequence of behaviors that was
meaningful in human terms. The birds were now, in effect,
speaking to themselves, using the letter keys as memoranda to
help them remember what color was behind the curtain. When we
removed the curtain, the birds stopped using the letter keys; they
eventually just went from color to color. When we restored the
curtain, after first making a number of errors, they started pecking
the letter keys again.

But how, precisely, could one account for the emergence of the
new sequence?

A number of remarkable performances I had witnessed during
my collaboration with Fred - especially the memorandum experi-
ment - got me thinking obsessively about this issue for years.

3.1. “Insight” in the pigeon

The next experiment - the first of many I conducted along
these lines with the help of a number of talented students - took
on the gold standard of chimpanzee performances: the remarkably
“insightful” problem-solving performances observed by Wolfgang
Kohler in the early 1900s (Kohler, 1925). In one of the most
memorable events that Kohler described, after a period of appar-
ent confusion and frustration, a chimpanzee named Sultan was
successfully able to grab some bananas that were hanging out of
reach by placing a crate beneath the bananas and climbing -
something he had never been taught to do. (Nearby chimps had
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previously tried to reach the bananas merely by jumping, but their
attempts had been fruitless.)

Could pigeons solve the classic box-and-banana problem? My
students and [ were able not only to get pigeons to solve the
problem in a human-like way - first displaying signs of confusion,
then rapidly moving a box beneath a small toy banana, then
climbing onto the box and pecking the banana - but also, by
varying the training histories of other birds, to show how various
kinds of experiences contributed to the emergence of the solution.
Birds that solved the problem had first had four kinds of experi-
ences: they had been fed for pecking the toy banana when it was
within reach; they had been taught to push a box toward green
targets at ground level; they had been taught to climb onto a box
and peck a toy banana suspended above it; and they had been
exposed to the toy banana when it was out of reach, learning that
jumping and flying to reach the banana never produced food.

Birds that had never been taught to climb pushed the box
toward the banana but never managed to get on the box and peck
the banana. A bird whose jumping and flying toward the banana
had never been eliminated jumped and flew toward the banana in
the test situation for several minutes before solving the problem.
Birds that had never been taught to push were completely help-
less. Our report appeared in Nature in 1984 (Epstein, Kirshnit,
Lanza, & Rubin, 1984).2

The study not only demonstrated an elegant case of “the
spontaneous interconnection of repertoires” — the phenomenon
Fred and I had observed in the memorandum experiment - it also
suggested that there is an orderly relationship between the
particular experiences an organism has had and the type of novel
behavior that emerges in a new situation.

But were the performances themselves orderly? In 1984, in a
talk I gave at the annual meeting of the International Society of
Comparative Psychology (ISCP), I offered moment-to-moment
accounts not only of pigeons' performances in the box-and-
banana experiments but also of the performances of humans
attempting to solve Maier's (1931) classic “two-string” problem
(Epstein, 1984b). The same principles, I argued, could help us
understand why both pigeons and people behaved as they did
moment to moment in time in new situations — and why such
performances often resulted in the emergence of genuinely novel
behavior. I also presented the basics of generativity theory.

3.2. Moment to moment

My students and I learned how to give running accounts of
novel performances mainly by videotaping performances and then
studying them repeatedly in slow motion, often reviewing the
same recording dozens of times. The goal was to be able to apply
well-established principles of behavior to what we were seeing
with at least a reasonable degree of confidence. For the most part,
we avoided “coding” the performances. Although coding some-
times has value, it necessarily simplifies what one is observing,
directing attention away from all aspects of behavior that don’t fit
the coding scheme. In that sense coding is bit like putting the bird
back into an opaque box.

Here is what happens when a pigeon that has had the four
optimal experiences described earlier is faced for the first time
with an out-of-reach banana and a small box located about a foot
away on the floor of the chamber (for a more detailed account
with supporting diagrams, see chapter 2 of Epstein (1996a);

2 To view an exceptionally human-like example of a pigeon solving the box-
and-banana problem, visit http://www.youtube.com/watch?v=mDntbGRPeEU; at
this writing, the video has been viewed more than 200,000 times. To watch a 30-
min film about the Columban Simulation Project, visit http://www.youtube.com/
watch?v=QKSvu3mj-14.

cf. Taylor et al, 2010; Wimpenny, Weir, Clayton, Rutz, &
Kacelnik, 2009):

From the outset, the pigeon is presented with “multiple
controlling stimuli” - stimuli which, because of the pigeon's
training history, get multiple behaviors competing with each
other: climbing, pushing, and orientating toward the toy banana.
The pigeon has seen three kinds of stimuli that occasion those
behaviors: the box alone, the box with the green spot present, and
the banana over the box. Now it is seeing distorted forms of all
three of those stimuli.

Onlookers will tend to view the pigeon's vacillations between
box and banana as a sign of “confusion,” because people often feel
confused when faced with multiple controlling stimuli (imagine
how you would feel and behave as you were approaching a
defective stoplight on which the red and green lights were both
illuminated). At first, the relative strengths of the competing
behaviors are determined largely by the distance between the
box and the banana, predictable from known parameters of a
phenomenon called “stimulus matching” (Epstein, 1990, 1996a).

As the pigeon continues to look back and forth between banana
and box, however - notably, with no food being delivered - each
behavior rapidly grows weaker (the process of “extinction”), which
in turn stimulates the resurgence of other behaviors that have
been reinforced in this setting until, predictably, one repertoire
necessarily wins the competition: pushing. Some climbing might
occur first, but climbing will disappear rapidly because the
stimulus that controls climbing (box under banana) is present
only in a very distorted form. Pushing must inevitably win the
competition also because jumping and flying toward the out-of-
reach banana had recently been eliminated.

The pigeon pushes toward the banana because of the manner in
which pushing blends with orienting toward the banana. (When
behaviors - or “ideas,” for that matter, which are just covert
behaviors — compete, new sequences, blends, or both can occur;
the particulars are determined by current stimuli and the topo-
graphies of the behaviors. Some behaviors cannot blend; others —
such as spoken words - blend easily.) A type of generalization
called “functional generalization” might also be occurring - a
spread of effect from the green targets used in training to the toy
banana (cf. Bird & Emery, 2009; von Bayern, Rutz, Heathcote, &
Kacelnik, 2009).

As the box nears the banana, the relative probabilities of the
competing behaviors change because of stimulus matching: the
closer the box gets to the banana, the more salient the banana
becomes, which increases the probability that the bird will orient
and stretch toward it. What's more, the closer the box gets to the
banana, the more likely it is that climbing will occur because the
bird is creating closer and closer approximations to a stimulus it
has seen many times: box under banana. Indeed, some birds will
climb and stretch toward the banana prematurely and then
resume pushing. When the box is beneath the banana, the old
configuration is perfected, and the bird climbs and pecks. This last
step is a superb example of what I have long called “automatic
chaining” (or “autochaining”), the inadvertent production of sti-
muli that control other behaviors (imagine opening a refrigerator
door and seeing a slice of chocolate cake that you did not know
would be there).

Automatic chaining is a nearly ubiquitous phenomenon, facili-
tated by even a small movement; when a bird (or person) turns its
head even slightly, its visual field changes, producing new stimuli
that can change the probabilities of subsequent behaviors. We saw
evidence of precisely that phenomenon repeatedly on our videos.
And behavior not only produces stimuli; it also is a stimulus. When
we speak or think or imagine or hum a tune, our actions serve as
stimuli that can occasion other actions, just as surely as if we had
turned the page of the book; automatic chaining, in other words,
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might be an important mechanism in associative thinking, dream-
ing, and other cognitive phenomena (Epstein, 2008).

In subsequent procedures with pigeons, my students and I
were able to engineer “spontaneous tool use” (Epstein & Medalie,
1983), the “spontaneous interconnection of three repertoires”
(Epstein, 1985c; cf. Luciano, 1991), and the “spontaneous inter-
connection of four repertoires” (Epstein, 1987). Over time, we were
becoming better at producing more complex performances
because the dynamics of the interconnection process were becom-
ing clearer. In particular, we were becoming more adept at
reproducing and controlling the two basic scenarios that get
multiple behaviors competing: first, when recently effective beha-
vior is now ineffective (extinction-induced resurgence), and sec-
ond, when organisms are exposed to multiple, novel, or
ambiguous stimuli that are related to stimuli known to control
specific behaviors.

3.3. A formal theory

Verbal accounts are necessarily imprecise, which is why
important relationships among variables studied in the natural
sciences are virtually always expressed mathematically. The more
adept [ became at giving moment-to-moment accounts of con-
tinuous performances, the more frustrated I became by the lack of
precision in those accounts — an extinction phenomenon. Beha-
vioral processes do not operate one at a time, as my accounts
mistakenly suggested, and a rich environment is always present
which is not adequately described as consisting of a few “stimuli.”
Most important of all, behavior is continuous in time. There are no
responses; the “response” is just a construct, not a measurable
property of the behavior of organisms (Epstein, 1982; Skinner,
1935, 1938). Could I replace or at least supplement my verbal
accounts with formal theory?

In 1982 or 1983, I began experimenting with different types of
equations and modeling techniques that might allow me to do so.
An important step was to conjecture that multiple behavioral
processes are operating continuously on the probabilities of occur-
rence of multiple behaviors. Those behaviors are occasioned by an
interaction between the organism's behavioral history and the rich
environment surrounding that organism, the appearance and
composition of which are constantly changing, in part as a result
of the organism's own behavior.

At some point, | settled on four simple equations that repre-
sented basic processes that probably operate simultaneously in
most awake organisms most of the time: extinction, reinforce-
ment, automatic chaining, and resurgence (Fig. 1). What would

(1) Extinction: Yo+1=Yn-Yn ¥ €
Yn+1 ZYn+(1 'yn)* a

for Ay <0 and y'n-y'n-1<0,

2) Reinforcement:
(3)  Resurgence:
Yae1 = Yot (1-yn) * (- Ayy) *y'n
for Ay >0 and y'n-y'n-1>0,
Yor1 =Yt (1-yn) * Ay *y'a

4) Automatic
Chaining:

Fig. 1. The transformation functions of generativity theory. According to generativity
theory, multiple behavioral processes operate simultaneously on the probabilities
of multiple behaviors. In one possible instantiation of the theory, four basic
behavioral processes are represented (above). y, is the probability of behavior y
at cycle n of the algorithm, y; is the probability of behavior y" at cycle n of the
algorithm, e is a constant for extinction (it determines the rate at which the
probability of behavior y decreases over cycles of the algorithm), « is a constant for
reinforcement (it determines the rate at which the probability of behavior y
increases over cycles of the algorithm as a result of certain environmental events),
and 2y, is the constant of interaction between behaviors y and y'.

il

Fig. 2. Maier's (1931) two-string problem. Subjects are instructed to tie the two
ends of the strings together, but they quickly learn that they cannot reach both
strings at once. They learn this by pulling one string toward the other and reaching.
Most people then try pulling the second string toward the first, which makes little
sense. When provided with a long heavy object (#5 in inset), a subject is highly
likely to use it to extend his or her reach, but the object that is provided is not long
enough to reach the other string. When provided with a short heavy object (#1), a
subject is much more likely to solve the problem, which requires tying the object,
short or tall, to one string and swinging it, then pulling the other string toward the
swinging string and catching it when it comes near. Appropriately, the problem is
sometimes called “the pendulum problem.” Provided with a long object, if a subject
is able to solve the problem at all, automatic chaining is usually involved. The
person ties the long object to the end of a string and then pulls the object toward
the second string; this is one way of using the object to extend one's reach. When
that fails, the subject often lets go of the object, which causes the attached string to
swing in a pendulum motion. The solution follows rapidly. Objects of intermediate
lengths produce predictable outcomes according to those lengths.
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Fig. 3. Probability profile for Maier's (1931) two-string problem. A probability profile
generated by the transformation functions shown in Fig. 1, generated for five
behaviors relevant to Maier's (1931) two-string problem. The abscissa is labeled
“ticks,” which are cycles of the computer algorithm, each a scalable moment of
unspecified duration. The profile was generated with parameters for a short object
(#1 in Fig. 2), which generally produced rapid solutions to the problem and no
irrelevant reaching. Note that pulling one string toward the other decreases
steadily in probability and that other behaviors increase in probability in an orderly
sequence. Tying the object to the string makes swinging more likely, which, in turn,
makes connecting the strings more likely. The computer model that generates the
curve uses discrete state methodology, running a set of initial probabilities through
all four equations to generate a new set of probabilities, then running those
through the equations again, and so on.



286

happen, I wondered, if all of these equations were operating
simultaneously on some initial probability values for behaviors
that were known to be under the control of stimuli present in the
test situation? Just before the moment when I first activated the
computer program that instantiated these ideas, [ would have bet
a large sum of money that the output of the program would be a
meaningless array of random points on a graph. Instead, the
program produced smooth, overlapping curves for each behavior,
and the process of change over time was surprisingly interpreta-
ble. I called the resulting graph a “probability profile” and
published the details of the theory about a year after my pre-
sentation at ISCP (Epstein, 1985b).

I had almost immediate success with the new modeling
technique when I applied it to an analysis of video recordings I
was accumulating of people trying to solve Maier's (1931)
two-string problem in which subjects are asked to connect two
strings that they cannot reach simultaneously (Fig. 2). With
parameters appropriate to the structure of the problem, the
algorithm quickly generated profiles appropriate to the variants
of the problem I was presenting to different subjects. Fig. 3 shows
a probability profile appropriate to a performance in which an
individual is supplied with an object (“Object 1,” which is the
shortest of five different custom-made objects we employed in the
study) that makes solving the problem fairly easy (see the caption
for details).

R. Epstein / Journal of Contextual Behavioral Science 3 (2014) 279-290

The curves predict a clear transition from one behavior to another:
pulling one string toward the other (which doesn’t work and therefore
decreases in probability throughout the session), tying the object to
the string (highly likely with a short object, unlikely with a long
object), setting one string in motion (creating a pendulum, the end of
which one can easily catch while holding the other string), and then
connecting the strings. The most important curve in the profile,
however, is the lowest one, which indicates that the probability of
using a short object to try to extend one's reach stays low throughout
the session. Subjects who are supplied with a long object have trouble
solving the problem because they repeatedly use the object to try to
extend their reach, which can never result in a solution; a probability
profile for this case shows a rapid increase in the probability of
reaching. Until that probability begins to decrease again (extinction),
probability curves for solution-related behaviors (tying and swinging)
stay low. In this case, small parameter changes determine the
difference between failure and success.

A probability profile predicts not only how multiple behaviors
will change continuously in time, it also predicts arousal. Where a
number of different curves overlap - and specifically where the
sum of the probabilities exceed a value of 100% - the nervous
system is probably overwhelmed in some sense, and people feel
the competition among different behaviors (or “ideas”) as confu-
sion or frustration. We found some anecdotal support for this
hypothesis by interrupting performances on several occasions and
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Fig. 4. How to construct a frequency profile. A frequency profile reveals the orderliness in the moment-to-moment behavior of an individual subject by plotting occurrence/
nonoccurrence data (1 s and 0s) in a way that maximizes the discriminability of curves that represent the various behaviors occurring in a given setting. (a) The curve for
each behavior is constructed by computing a moving proportion (or moving sum) for the occurrence/nonoccurrence data for that behavior, ideally recorded in bins of 0.1 s or
smaller. Three different parameters - window size, resolution, and step size - can be varied. (b) Plotting the moving proportion (or sum) yields a three-part graph in which
the first third, which matches the window size, provides information about the beginning of a session and the second third shows clear transitions from one behavior to

another during the session.
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Fig. 5. Optimizing frequency profile parameters. With both resolution and step size held constant at 1 (to preserve as much information as possible about the recorded
occurrence/nonoccurrence data), changing the window size has a dramatic effect on the resulting curves. (a) A window size of 1 shows the raw data - the equivalent of check
marks on a behavior checklist. (c) A window size equal to the total number of bins (the observation intervals) in the session yields the traditional and marginally informative
cumulative record (evident to the left of the vertical line in the center of the graph). (b) A window size of roughly 25% of the total number of bins in the session yields curves
that optimally differentiate the behaviors, that suggest their dynamic interaction, and that reveal what appears to be an orderly transition from one behavior to another over
the course of the session. These curves also resemble the probability curves produced by the transformation functions of the generativity model (Fig. 6).
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Fig. 6. Predicting individual behavior moment to moment in time. (a) This probability profile, produced by the transformation functions of the generativity model, predicts the
behavior of a human subject on a touch-screen task. The subject has been instructed to move a spot across the screen into a goal area. Tapping three patches on the screen
(B1, B2, and B3) will move the spot in various directions and at varying speeds; tapping a fourth patch (B4) has no effect. The model predicts that the subject will begin
tapping B1, then gradually shift to B2, then gradually shift to B3, with responses alternating among the three choices along the way (where the curves overlap). It also
predicts that toward the end of the session, the subject will begin tapping B4, even though doing so has no effect. (b) This frequency profile shows actual data obtained from
one subject (S58) during a 5-min session. The pattern of responding is predicted well by the probability profile, including the shift to B4.
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asking people (a) how they felt and (b) what they were likely to do
next. When behavioral competitions were intense, people indeed
reported feeling frustrated and, of greater significance, they
seemed to have little or no idea what they were about to do.

How could they know? A great many computations are
required to generate a probability profile; real people are too busy
behaving to do any computing, assuming they are even capable of
such a feat. Our next step, of course, would have been to collect
physiological arousal data throughout each session; we never got
to that point, unfortunately (see the Postscript below).

3.4. An Informative graphical method

By 1985, I knew a lot about how to graph probabilities, but I
had no way to generate a comparable graph for an actual
performance by an individual. If four behaviors are in competition
at some point during a session, we might see signs of frustration,
and we will probably see switching among the behaviors. That
kind of performance looks quite disorderly, and it certainly feels
disorderly to the subject. Was there a way to tease out the
orderliness in an apparently disorderly performance, assuming,
of course, that the orderliness was there to be found?

I thought about this issue for 5 years before I saw a possible
solution to the problem; then it took an additional 5 years to bring
it to life computationally, even though - as these things almost
always turn out in retrospect - the solution was not that
complicated (Fig. 4).

[ called the graph that reveals the orderliness in a unique
performance by an individual a “frequency profile,” which turns
out, parametrically, to be a sensible compromise between the old
behavior checklist and the cumulative record (Fig. 5). Two of my
associates and I described this graphical technique in a paper we
presented at the 1999 meeting of the American Psychological
Association (Epstein, Thompson, & Crawford, 1999).

A frequency profile is generated by computing a moving
proportion (or sum) of occurrence/nonoccurrence values (Fig. 4);
for good resolution, one would record occurrence/nonoccurrence
data for a number of different behaviors at least every tenth of a
second. This means either laboriously coding a video recording by
hand (which my students spent many hours doing), or, to the
extent that it is possible these days, using software that will code a
video recording automatically. As an alternative, one can record
tasks that are performed on a touch-screen or that are tracked
using other electronic devices; that way, from the outset, one can
easily monitor a number of different behaviors (as they are defined
by one's equipment) in high resolution - even in real-time.

One could easily attempt the real-time prediction of an indivi-
dual's behavior using the methodologies I have described. If a
number of different behaviors were being coded and tracked
digitally in real-time, a frequency profile would be easy to
generate continuously. On the prediction side, probability curves
could be generated using the generativity model and then con-
tinuously refined and updated based on feedback from the actual
performance. The accuracy of one's predictions over upcoming
intervals of time could then be quantified. This is how real-time
prediction is done in weather forecasting, electrical engineering,
and other domains. To my knowledge, it has not yet been done
with organisms, but it wouldn’t be difficult to attempt it - even
with human subjects.

Warning: as | noted earlier, coding simplifies. That said,
a frequency profile instantly reveals the orderliness in the con-
tinuous behavior of a single organism that is, to my knowledge,
unparalleled by any other graphical method. What's more, it
generates curves that look very much like those of the probability
profile, allowing both for statistical comparisons and an

immediately informative visual confirmation of the accuracy of
one's predictions (Fig. 6).

3.5. Postscript

Although I continue to explore the practical applications of gen-
erativity theory (e.g., Epstein, 1996b, 1996¢, 1997, 20003, 2000b, 2011;
Epstein, Schmidt, & Warfel, 2008; Epstein, Kaminaka, Phan, & Uda,
2013; Epstein & Phan, 2012), my pertinent laboratory research ended
fairly abruptly in the early 1990s after several failed attempts to obtain
funding to attempt the real-time prediction of human behavior. I had
conjectured that on reasonably complex touch-screen tasks, a real-
time model could stay ahead of a subject by 1 or 2 s — possibly longer
on simple tasks — and that this technology might improve rapidly over
time. Perhaps some people found this idea disturbing. It is one thing to
predict that a pigeon will needlessly peck a moving spot of light a
thousand times over the next hour and quite another to predict
complex human behavior moment to moment in time.

Competency-based creativity training derived from generativity
theory has been shown to have value (Bosiok, 2013; DeTienne &
Chandler, 2004; Epstein et al, 2008, 2013; Epstein & Phan, 2012;
Miller et al., 2013), and generativity theory is sometimes mentioned in
articles or books that offer practical advice for boosting creativity or
innovation (e.g., DiChristina, 2008; Greene & Rice, 2007; McCorkle,
Payan, Reardon, & Kling, 2007; Weinstein & Morton, 2003; Woodman,
2007; Zmuda, 2010). A small but substantive literature has also grown
over the years on resurgence (e.g., da Silva, Maxwell, & Lattal, 2008;
Reed & Morgan, 2006; Sanchez, & Nieto, 2005; Wacker et al.,, 2013);
Wilson and Hayes (1996) even showed that derived stimulus relations
will resurge in human subjects under certain conditions. But in
scientific publications generativity theory itself has received little more
than mentions, citations, or brief summaries (e.g., Auersperg, Kacelnik,
& von Bayern, 2013; Boles, 1990; Bujedo, Garcia, Fernandez,
Dominguez, & Zayas, 2004; Cook & Fowler, 2013; Hovell, Wahlgren,
& Adams, 2009; Johnson & Layng, 1992; Manrique, Volter, & Call, 2013;
O’Hara & Sternberg, 2001; Potter & Wilson, 2011; Rastall, 2010; Runco,
1993; Runco & McGarva, 2013; Shettleworth, 2010, 2012; Simonton,
1999; Stahlman, Leising, Garlick, & Blaisdell, 2013). To my knowledge,
no one other than I has ever used the transformation functions, the
corresponding computer modeling technique, or the frequency or
probability profiles to predict or analyze behavior. In short, the full
potential of generativity theory has yet to be explored.

In an interview published in 1968, Skinner was asked about an
issue that had troubled him early in his career: What do you think
about the concept of response? He replied: “As it stands, I'm not
sure that response is a very useful concept. Behavior is very fluid;
it isn’t made up of lots of little responses packed together. I hope |
will live to see a formulation which will take this fluidity into
account” (quoted in Evans (1968, pp. 20-21)).

Generativity theory is such a formulation, and even if it is
incorrect in its particulars, I believe that there are distinct
advantages in trying to understand behavior for what it really is:
a natural physical phenomenon that is both continuous in time
and probabilistic yet orderly in nature.
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